Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Cell Rep Med ; 4(3): 100955, 2023 03 21.
Article in English | MEDLINE | ID: covidwho-2235229

ABSTRACT

Cellular immune defects associated with suboptimal responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyze antibody, B cell, CD4+, and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CIs). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses, and enhances comparatively more T helper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (tumor necrosis factor alpha [TNFα]/interleukin [IL]-2 skewing), while others (CCR6, CXCR6, programmed cell death protein 1 [PD-1], and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieving robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , CD4-Positive T-Lymphocytes
2.
iScience ; 26(1): 105904, 2023 Jan 20.
Article in English | MEDLINE | ID: covidwho-2210554

ABSTRACT

Spacing the first two doses of SARS-CoV-2 mRNA vaccines beyond 3-4 weeks raised initial concerns about vaccine efficacy. While studies have since shown that long-interval regimens induce robust antibody responses, their impact on B and T cell immunity is poorly known. Here, we compare SARS-CoV-2 naive donors B and T cell responses to two mRNA vaccine doses administered 3-4 versus 16 weeks apart. After boost, the longer interval results in a higher magnitude and a more mature phenotype of RBD-specific B cells. While the two geographically distinct cohorts present quantitative and qualitative differences in T cell responses at baseline and after priming, the second dose led to convergent features with overall similar magnitude, phenotype, and function of CD4+ and CD8+ T cell responses at post-boost memory time points. Therefore, compared to standard regimens, a 16-week interval has a favorable impact on the B cell compartment but minimally affects T cell immunity.

3.
Cell Rep ; 42(1): 111998, 2023 01 31.
Article in English | MEDLINE | ID: covidwho-2177163

ABSTRACT

Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant spikes. We observed that BA.4/5 and BQ.1.1 spikes are markedly less recognized and neutralized compared with the D614G and other Omicron subvariant spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2-naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Vaccines, Synthetic , Mutation , Antibodies, Viral , Antibodies, Neutralizing
4.
Vaccines (Basel) ; 11(2)2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2200989

ABSTRACT

The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected better recognize and neutralize the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used.

5.
Cell Rep ; 41(4): 111554, 2022 10 25.
Article in English | MEDLINE | ID: covidwho-2104502

ABSTRACT

Due to the recrudescence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections worldwide, mainly caused by the Omicron variant of concern (VOC) and its sub-lineages, several jurisdictions are administering an mRNA vaccine boost. Here, we analyze humoral responses induced after the second and third doses of an mRNA vaccine in naive and previously infected donors who received their second dose with an extended 16-week interval. We observe that the extended interval elicits robust humoral responses against VOCs, but this response is significantly diminished 4 months after the second dose. Administering a boost to these individuals brings back the humoral responses to the same levels obtained after the extended second dose. Interestingly, we observe that administering a boost to individuals that initially received a short 3- to 4-week regimen elicits humoral responses similar to those observed in the long interval regimen. Nevertheless, humoral responses elicited by the boost in naive individuals do not reach those present in previously infected vaccinated individuals.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , BNT162 Vaccine , COVID-19/prevention & control , Antibodies, Viral , COVID-19 Vaccines , Vaccination
6.
Cell reports ; 2022.
Article in English | EuropePMC | ID: covidwho-2046858

ABSTRACT

Due to the recrudescence of SARS-CoV-2 infections worldwide, mainly caused by Omicron variant of concern (VOC) and its sub-lineages, several jurisdictions are administering a mRNA vaccine boost. Here, we analyze humoral responses induced after the second and third doses of mRNA vaccine in naïve and previously-infected donors who received their second dose with an extended 16-week interval. We observe that the extended interval elicits robust humoral responses against VOCs, but this response is significantly diminished 4 months after the second dose. Administering a boost to these individuals brings back the humoral responses to the same levels obtained after the extended second dose. Interestingly, we observe that administering a boost to individuals that initially received a short 3-4 weeks regimen elicits humoral responses similar to those observed in the long interval regimen. Nevertheless, humoral responses elicited by the boost in naïve individuals do not reach those present in previously-infected vaccinated individuals. Graphical In this study, Tauzin et al. report that the third dose of SARS-CoV-2 mRNA vaccine elicits strong humoral responses against VOCs in naïve individuals, regardless of the interval between the first two doses. However, these responses remain lower than those induced by hybrid immunity.

7.
Cell Rep ; 39(13): 111013, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1885674

ABSTRACT

Spacing of BNT162b2 mRNA doses beyond 3 weeks raises concerns about vaccine efficacy. We longitudinally analyze B cell, T cell, and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously infected donors. This regimen elicits robust RBD-specific B cell responses whose kinetics differs between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting does not increase magnitude of CD4+ T cell responses further compared with the first dose, unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. Integrated analysis shows longitudinal immune component-specific associations, with early T helper responses post first dose correlating with B cell responses after the second dose, and memory T helper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , Humans , Immunity, Humoral , RNA, Messenger , SARS-CoV-2
8.
Cell Rep ; 38(9): 110429, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1734242

ABSTRACT

Continuous emergence of SARS-CoV-2 variants of concern (VOCs) is fueling the COVID-19 pandemic. Omicron (B.1.1.529) rapidly spread worldwide. The large number of mutations in its Spike raise concerns about a major antigenic drift that could significantly decrease vaccine efficacy and infection-induced immunity. A long interval between BNT162b2 mRNA doses elicits antibodies that efficiently recognize Spikes from different VOCs. Here, we evaluate the recognition of Omicron Spike by plasma from a cohort of SARS-CoV-2 naive and previously infected individuals who received their BNT162b2 mRNA vaccine 16 weeks apart. Omicron Spike is recognized less efficiently than D614G, Alpha, Beta, Gamma, and Delta Spikes. We compare with plasma activity from participants receiving a short (4 weeks) interval regimen. Plasma from individuals of the long-interval cohort recognize and neutralize better the Omicron Spike compared with those who received a short interval. Whether this difference confers any clinical benefit against Omicron remains unknown.


Subject(s)
Antibodies, Neutralizing/blood , BNT162 Vaccine/administration & dosage , Immunization Schedule , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , Cohort Studies , Female , HEK293 Cells , Humans , Immunization, Secondary/methods , Male , Middle Aged , Quebec , SARS-CoV-2/pathogenicity , Time Factors , Vaccination/methods , Vaccine Potency , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology , Young Adult , mRNA Vaccines/administration & dosage , mRNA Vaccines/immunology
9.
Cell Host Microbe ; 30(1): 97-109.e5, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1549683

ABSTRACT

The standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered three weeks apart. However, some public health authorities spaced these doses, raising questions about efficacy. We analyzed longitudinal humoral responses against the D614G strain and variants of concern for SARS-CoV-2 in a cohort of SARS-CoV-2-naive and previously infected individuals who received the BNT162b2 mRNA vaccine with sixteen weeks between doses. While administering a second dose to previously infected individuals did not significantly improve humoral responses, these responses significantly increased in naive individuals after a 16-week spaced second dose, achieving similar levels as in previously infected individuals. Comparing these responses to those elicited in individuals receiving a short (4-week) dose interval showed that a 16-week interval induced more robust responses among naive vaccinees. These findings suggest that a longer interval between vaccine doses does not compromise efficacy and may allow greater flexibility in vaccine administration.


Subject(s)
BNT162 Vaccine/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Female , Humans , Male , Middle Aged , Vaccination/methods , Young Adult
10.
Viruses ; 13(9)2021 09 02.
Article in English | MEDLINE | ID: covidwho-1390788

ABSTRACT

3D-printed alternatives to standard flocked swabs were rapidly developed to provide a response to the unprecedented and sudden need for an exponentially growing amount of diagnostic tools to fight the COVID-19 pandemic. In light of the anticipated shortage, a hospital-based 3D-printing platform was implemented in our institution for the production of swabs for nasopharyngeal and oropharyngeal sampling based on the freely available, open-source design provided to the community by University of South Florida's Health Radiology and Northwell Health System teams as a replacement for locally used commercial swabs. Validation of our 3D-printed swabs was performed with a head-to-head diagnostic accuracy study of the 3D-printed "Northwell model" with the cobas PCR Media® swab sample kit. We observed an excellent concordance (total agreement 96.8%, Kappa 0.936) in results obtained with the 3D-printed and flocked swabs, indicating that the in-house 3D-printed swab could be used reliably in the context of a shortage of flocked swabs. To our knowledge, this is the first study to report on autonomous hospital-based production and clinical validation of 3D-printed swabs.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , COVID-19/virology , SARS-CoV-2 , COVID-19 Testing/instrumentation , Disease Management , Humans , Nasopharynx/virology , Polymerase Chain Reaction/methods , Printing, Three-Dimensional , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Specimen Handling/methods
11.
Cell Host Microbe ; 29(7): 1137-1150.e6, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1252574

ABSTRACT

While the standard regimen of the BNT162b2 mRNA vaccine for SARS-CoV-2 includes two doses administered 3 weeks apart, some public health authorities are spacing these doses, raising concerns about efficacy. However, data indicate that a single dose can be up to 90% effective starting 14 days post-administration. To assess the mechanisms contributing to protection, we analyzed humoral and T cell responses three weeks after a single BNT162b2 dose. We observed weak neutralizing activity elicited in SARS-CoV-2 naive individuals but strong anti-receptor binding domain and spike antibodies with Fc-mediated effector functions and cellular CD4+ T cell responses. In previously infected individuals, a single dose boosted all humoral and T cell responses, with strong correlations between T helper and antibody immunity. Our results highlight the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support for spacing doses to vaccinate more individuals in conditions of vaccine scarcity.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/chemistry , BNT162 Vaccine , Betacoronavirus , COVID-19/prevention & control , Carrier Proteins , Female , Humans , Immunity , Immunoglobulin Fc Fragments , Male , Middle Aged , Vaccination , Vaccines, Synthetic/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL